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Abstract

Three-dimensional, unsteady, multi-zoned fluid dynamics simulations over full scale aircraft is typical of
problems being computed at NASA Ames' Numerical Aerodynamic Simulation (NAS) facility on CRAY2
and CRAY-YMP supercomputers. With multiple processor workstations available in the 10-30 Mflop
range, we feel that these new developments in scientific computing warrant a new approach to the design
and implementation of analysis tools. These larger, more complex problems create a need for new
visualization techniques not possible with the existing software or systems available as of this writing.
These visualization techniques will change as the supercomputing environment, and hence the scientific

methods employed, 1 evolve even further.

Visualization of computational aerodynamics requires flexible, extensible, and adaptable software tools for

performing analysis tasks. Flexible means the ability to handle a diverse range of problems. Extensible
means the ability to interact at all levels of the software hierarchy, either through existing built-in
functionality or through the implementation of custom "plug-in" modules. Adaptable means the ability to
adapt to new software and hardware configurations through the use of modular structured programming
methods, a graphics library standard, and the use of common network communication protocols (like UNIX
sockets) for the distribution of processing.

This paper discusses FAST (Flow Analysis Software Toolki0, an implementation of a software system for
fluid mechanics analysis that is based on this approach.

llaf.lmxalma

Computational Fluid Dynamics (CFD), involves the use of high speed computers to simulate the
characteristics of flow physics. Computational aerodynamicists use CFD methods and solvers to study
subsonic, supersonic, transonic and hypersonic (compressible) regimes of flight, in addition to studying
incompressible problems within particular systems. Examples of ongoing studies on full-scale aircraft
configurations at NASA Ames include the Space Shuttle, F16, and the Aerospace Plane. Specialized areas
of research include jet-engine turbine flow, VSTOL (Vertical / Short Take Off and Landing) and ground
effect research, and even flow through an artificial heart. Basic CFD research involves unsteady flow

phenomena like vortex shedding and turbulence modelling.

A flow solver running on a supercomputer must handle input files (finite difference grids, reL 7,15,16) that
are typically very large. For example, the number of xyz triplets (each represented by three eight-byte
floating point numbers) in a 100 x 100 x 100 grid yields a 24 Mbyte file. If complexity is added, or the grid
resolution (density of points) must be raised for flow solving to yield acceptable results, the f'des grow

1 FAST (Flow Analysis Software Toolkit) Developed by Stealing Federal Systems Inc. under contract to NASA
Ames Research Center NASA Contract #NAS2-11555.
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proportionally in size. Once the solver has been run, there are from five to eight variables for each grid
node, again, each represented by an eight-byte floating point number. For the 24 Mbyte example, five
variables for each grid point yields a 40 Mbyte raw data file. This is a total of 64 Mbytes (grid plus the
solution) for this example. The F16 mentioned previously, which consists of 29 grid zones, is over 108
Mbytes worth of data! (Note: On the workstations these become four-byte IEEE format floating point
numbers making the files about half this size)

Two examples of grid generation programs are:

3DGRAPE
IZ

3-dimensional grids about anything by Poissons Equation (Sorensen)
Interactive zoner (Cordova)

A list of commonly used flow solvers are:

ARC2D
ARC3D
TNS
CNS
PNS
INS3D
TWING

Ames Research Center 2-dimensional solver (Pulliam)
Ames Research Center 3-dimensional solver (Pulliam)
Transonic Navier Stokes solver (Flores)
Compressible Navier Stokes solver (Flores)
Parabolized Navier Stokes solver (Chausee)
Incompressible Navier Stokes solver (Kwak)
Transonic Wing solver (Thomas)

Programs available for visualization of CFD data sets are:

PLOT3D
SURF

GAS

RIP

A command line driven Fortran program that computes CFD quantities (Buning [7])
Allows for the rendering of smooth, wireframe, and function mapped surfaces with a more
interactive interface (Plessel[8])
Combines graphics generated from PLOT3D and SURF and allows animations to be
creat_ and recorded (Merritt[9])
A program for interactive particle tracing (Rogers[19])

FAST Overview

The software cycle for the creation and and analysis of computational fluids results could be reduced to the
following conceptual model:

• Data generation (Flow solving)
• Data marhpulation (The original data may need to befiltered or transfered)
• Data abstraction (A graphical object is defined using the data)
• Data rendering (Viewing on a workstation)
• Data interpretation(analysis)
• Feedback (Perhaps go back to previous phases)

A problem with the existing CFD software is that it takes a non integrated approach to dealing with the
different steps of the CFD process. The grid generation and flow solver programs are involved in the data
generation phase. The visualization software is part of the abstraction, rendering and analysis phases. The
various programs present the user with different interfaces, and there is little attention paid to the dam
manipulation and feedback steps. In the current system, large data sets flow from one step to another from
disk to ram and back to disk (perhaps from one computer to another), taking on different file formats along
the way.
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The design criteria for FAST were:

• Minimize the data path in the CFD process
• Provide a consistent user interface

• Allow for quick user feedback
• Provide an extensible software architecture

• Provide a quick path through the CFD process
• Provide libraries and tools so that application modules could be added easily
• Isolate 3D viewing tasks from the application module programmer

In order to achieve these design goals FAST has evolved into collection of programs that communicate via
Unix sockets with a cen_al hub process that manages a pool of shared memory. A fundamental data type
is loaded or generated and stored into shared memory (data generation and manipulation), a collection of
programs (modules) operate on data and produce additional data (objects) that are also placed into shared
memory (data abstraction). The objects are rendered using the fast viewing system (data rendering). Data
is analyzed by additional modules or visual inspection (data analysis). Depending on the results of the
analysis the user changes input to any of the previous modules (feedback). In addition there is a collection
of libraries and utilities that are used to build the application modules.

The use of shared memory reduces the flow of data in the system. The use of a viewing process relieves the
burden of three dimensional interactive viewing from the application programmer. The fact that the
fundamental data type(s) reside in shared memory makes it easy to make changes based on the feedback
obtained from the analysis phase. Finally the use of FAST libraries and utilities makes it easy to add new
modules.

We are aware of other scientific visualization packages and visualization capabilities in existence and/or
under development. These include visual programming examples like CONMAN (Silicon Graphics[3]) and
AVS (Application Visualization System, Stardent Computer[4]), and other scientific visualization
environments like MI_S (Multi-Purpose Graphics System, Cray Research), and the Personal Visualizer
(Wavefront), as well as 'scripting' languages like PVWAVE (Precision Visuals), IVIEW (Intelligent
Ligh0, and VISAGE (Visual Edge) to name a few. While FAST is built specifically around the research
tasks involved in CFD analysis, these other environments and packages typically take a much more
generalized approach towards visualization, for the obvious reason that CFD research is a relatively small
part of their intended audience. These systems and environments often require a certain level (a 'power' user,
visual programmer, or animation/rendering expert) of skill with computer graphics above and beyond the
level of the typical CFD scientist. In researching these other more general approaches, we have discovered
that the results (data) get handed off at some point to the 'power' user (or perhaps even computer graphics
group or expert) and this person (or group) creates the animations, films or videos. FAST is built around a
model where the scientist is the fast and last person in the data chain and FAST is a toolset for his
environment. This is not meant as a criticism of these other approaches, as the need for generalization
dictates the need for this other level of user. It is our belief, though, that the techniques used in FAST
presented in this paper would also apply and be very useful in the more general environments.

Graphics, CPU, and memory handling performance were key considerations in the FAST design and
development process. For graphics, a base-line level of what is commonly termed (but undefmed) as "real-
time" had to be established and agreed upon as acceptable. This was determined to be a minimum of 3
frames/sec for a typical 10-20 Mbyte problem (techniques used for rendering would determine the problem
size in this range). This base line frame rate was determined to be essential in visualization of fluid
mechanics for understanding the dynamics of the simulations. For the development platform, the Silicon
Graphics 4D220/GTX (16 Mbytes memory) this goal was reached and we are very pleased with the current
performance level. The targeted platform, the Silicon Graphics 4D320/VGX, is expected to have even
higher levels of cpu and graphics performance[ 18].

We have implemented in FAST new techniques and capabilities non-existent in the previous tools and
expanded on others. For example, the colormap editing capabilities were enhanced to include banded,
spectrum, dynamic, contour, striped, and two-tone function mapping. Surface rendering includes the ability
to 'sweep' planes through the data either grid orien'_.ed, arbitrarily oriented, or a contour surface (isosurface).
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Enhanced titling and labelling feattgres include the use of postscript type fonts and symbols, where typeface,
font point size, and style can be specified. The animation capability is substantially enhanced beyond what
was available in GAS (Graphics Animation System[9]). These enhancements include greater conlrol by
allowing the ability to edit scenes, views, and objects. Another capability allows for separaW scenes to be
rendered in separate windows giving the scientist/user even more flexibility and animation control.

FAST Architecture

Each separate process communicates through the FAST Hub while managing shared memory and
communicating using standard Berkeley UNIX Interprocess Communication (]PC[11]).

Hub

The central process of the FAST environment is the Hub module. The Hub module invokes and shuts down
the FAST modules yet its main function is to process requests sent by the modules. These requests might
be to allocate a segment of shared memory and return the shared memory id, or to delete a shared memory
segment. Since the Hub process is always running as long as FAST is active, the data allocated through the
Hub remains accessible even when the original process which requested it is terminated. The Hub module is
essentially transparent to the user, in that it has no panels.

This is the central module for processing, from the users perspective. This is where the graphical data pool
generated by other modules is managed and interactively viewed. FAST Central, unlike other FAST
modules, runs continuously while FAST is up and running. Other modules can be spawned or shut down as
they are needed from the FAST Central module. In addition FAST Central allows object atwibutes to be set
(e.g. Iransparency, mirroring, line width),
scene attributes to be set (e.g. lighting, color map editing, background color), viewing preferences to be
set(e.g, toggle axis, mouse axis modes) as well containing the animation conm31 panels. Animator is used
to create and record smooth (spline interpolated) keyframe animation sequences.

File Input

The file input module loads In'e-computed PLOT3D type grid, solution, and function files as well as
ARCGraph[20] files into FASTs shared memory. It consists of three control panels. The file input panel
is used to list file names and information and to load data into shared memory. The data sub-panel displays

pertinent information about the previously loaded grids and solutions. The ARCGraph panel is used for
handling this type of file input.

CFD Calculator

The CFD Calculator module allows the scientist to attach to the grid and solution data that has been loaded
and to calculate a variety of scalar and vector functions for analyzing the computed solution. The Calculator
has the appearance and functionality of a real programmable calculator but instead of operating on numbers
it operates onfields of numbers (scalars) and fields of vectors.

Its basic operations (e.g., +, -, MAG, CURL), are applied to entire fields - either component-wise or vector-
wise. For example, + applied to two scalar fields will produce a new scalar field of values that are the sums
of the corresponding values of the two operand scalar fields. And LOG applied to a vector field will generate
a new vector field by taking the logarithm of each component of the corresponding operand vector. In
addition to component, scalar and vector binary operators there are also special operations such as
GRADIENT, DIVERGENCE, DOT, and CROSS that apply to entire fields and produce new scalar or
vector fields.

The scientist can select a range of active solution zones on which to operate and use the CFD Calculator to
compute about 100 different built-in CFD scalar and vector functions such as Pressure, Enthalpy,
Normalized Helicity, Velocity, and Vorticity [16]. These fields are stored in one of the Calculator's scalar or
vector registers. The Calculator can then be programmed with formulas that operate on these fields and
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produce new ones using the basic operations already mentioned. The CFD Dam Panel is used to copy,
move, delete, and display information fields (such as min-max) stored in the Calculator's registers. These
features, and others, help make the CFD Calculator an interactive, powerful tool that the CFD scientist can
use to compute important quantities for analyzing computed solutions.

The SURFace Extractor and Renderer module attaches to grids (loaded by the File Input Module) and scalar
and vector fields (generated by the CFD Calculator) and renders grid surfaces as points, lines, vectors, or
polygons. These gr/d surface objects are also ston_ in shared memory so they can be rendered in the FAST
environment. The grid surfaces can show the grid geometry, for example, a lighted, Gouraud [2] shaded
polygon surface of the Space Shuttle, or they can display the scalar data as function colored lines or
polygons, or vector data as line vectors, vector heads, or polygon vector deformation surfaces (vector heads
connected in a surface). Grid surface objects can represent grid geometries, scalar fields, and vector fields.

In addition to changing data types, surface rendering and other attributes, SURFER can sweep lhrough all
surfaces in a given grid direction.This creates a dynamic image showing even more features of the flow
field.

Ti0er

The Tiller module is used to create high quality Postscript text suitable as titles for images in videos,
slides, and movies. Title attributes include font, point size, position, color, drop shadows, and a snap-to-
grid feature to make alignment easier. Like other graphical objects, title objects are stored in shared memory
so they can be added to other scenes. Postscript fonts from other sources may be imported and created titles
may be saved for later use.

Isolev

Isolev performs three functions using a single algorithm. One, it draws surfaces of constant value in 3D
scalar fields, i.e. isosurfaces. Two, it draws cutting planes function mapped by the scalar field of interest.
Cutting planes may be at any angle, and are consistently oriented throughout a multi-zoned grid. Three, it
draws vector field deformation surfaces originating at cutting planes or isosurfaces. Iso and deformation
surfaces are lighted and smooth shaded. Both isosurfnces and cutting planes may be rendered as dots for
improved performance. Interactive grid coarsening is available to improve interactivity. The user may also
set up sweeps, where isolev automatically sweeps the isovalue (or cutting plane location) through all
possible values, or within a user specified range. This can be used to get a feel for the entire volume. The
marching cubes algorithm [Kerlick,13] is used to generate polygons. Level scalar fields are created to
generate cutting planes function mapped by the scalar field of interest. Edge crossings, a faster algorithm,
is used to generate points. A user selected vector field may be used to draw vectors originating at the
crossing points.

Tracer
The trac_ module is used to compute particle traces and render them as vectors through the flow field.
Tracer attaches to a grid and solution and allows the user to interactively select the point of release or
rake[7] from which the traces are computed. The traces can either be computed forward or backward in time
as well as allowing the user to selectively save traces. Once traces are saved, a delta time factor may be
intemetively adjusted through the panel to allow particle trace Ncyeling".
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Interactive Visualization Control
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\
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Interactive Lighting
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functibn mapped surfaces,

interactive lighting

Animation]Recording

keyframe construction

non-linear spline interpolation

stereo recording

View/Scene Control

3D transformation modes

spaceball controller
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Figure 1, "FAST Interactive Visualization Control"

Interactive Visualization Control

Multi-orocessed: When working within the FAST environment, several modules work together to generate

a scene: Surfer generates the grid surface objects, CFD Calculator computes the scalar and vector fields,
Titler is used to generate the text, and FAST Central was used for image handling and color map editing.
When modules are not needed they can be iconified so they occupy less screen space and CPU resources.
Because of this, the FAST environment can be running while other applications are also being used.
Alternatively, FAST modules can be terminated without exiting the FAST environment - and this has no
effect on their data since it is already in shared memory. Unlike standard dynamic memory, shared memory
remains available even after the allocating process is killed. All shared memory segments are removed when
FAST is exited via the Quit selection of the FAST Central module.

Powerful. The FAST environment contains sophisticated tools such as the CFD Calculator that enable the

scientist to analyze computed solutions by examining many relevant "CFD quantities", such as normalized
helicity, shock, perturbation velocity, and vorticity. And if these "built-in" functions are not adequate the

26



Calculator

Shared Memory Data

NAS Grid List Scalar Lists Vector Lists
File Input

rl 70
i"1,

IN

_U _ XX Remote Supercomputer ccH_dlWon_

Flow Trace_

Titler

CMAP

Figure 2, The FAST Environment



scientist can program the Calculator to compute customized functions using the rich set of component,
scalar, and vector operators.

Hexible. Storing data and graphical objects in shared memocy enables complex scenes to be constructed by

mixing and matching shared data from any module that is currently plugged into the FAST environment.
This allows grid, scalar, and vector data to be combined to generate grid surfaces rendered as grid lines, scalar
colored smooth polygon surfaces, and vectors.

_. Surfer provides the ability to intetactively alter scene attributes such as coloring the data by a

different scalar field, displaying a different vector field, adjusting the legend, normalization, and clipping
ranges, or changing rendering and data types. For example, the vector field can be rendered as a Gouraud
shaded, lighted, vector deformation surface. With the looping option turned on Surfer will sweep through all
data in the current grid direction - providing a dynamic visualization ability. And while this is happening
the scientist (from FAST Central) can transform (e.g., rotate, or zoom) all or part of the scene or use the
color map editor to adjust the function color mapping by inserting, deleting, and changing colors, or
selecting a different colormap types such as Spectrum, Contour, Striped, Twotone, or Banded.

]]_C and Shared Memory_ Implementation

It was decided that an interprocess communication (IPC) package must be implemented to allow FAST to
operate as a modular environment where reso_ could be shared among different machines as well as on a
single host. Specifically, Unix System V shared memory facilities are used to allow each process (module)
to access the environment's data, while the Berkeley IPC package's implementation of Internet domain
stream sockets allows for the coordination of this data.

As each module is executed by the FAST hub, it must immediately establish a two-way communication
channel between it and the hub. Because an Internet domain address consists of a machine network address

and a port number, these two values are used in establishing this connection. The following command is
therefore executed at the beginning of a module's main routine:

socket_establish and accept (hub_host,hub_ &rsock, &wsock);

This does the following:
1) create a socket from which to read
2) determine a local port and listen on it
3) create a writeable socket and establish a connection to the hub (using the hub's

hosmame and port number which came in as arguments)
4) now send the port number to the hub and
5) accept a connection from the hub

At the same time, the hub process executes this statement:

socket_accept_and_establish( sock, modulehost, &wsock );

which does the following:
1) create one socket from which to read from all modules
2) accept a connection from the next module
3) read in the module's port number
4) create a writable socket and connect this socket to the module

The modules specified for inclusion in the FAST environment are specifically listed in a "run command"
file called $HOME/.fastic. Also included within this file is information about initial placement of a
module's main panels, the name of the host where the module resides, and the complete path name of the

particular module.

Once a module has been executed by the FAST hub using the Unix system(3) call and the communication
channels have been established, the hub enters a loop where it waits on a request from any of the active
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modules to perform some sort of action. The hub process uses the Unix select(2) call to examine all
available read socket file descriptors to determine if there is information in the pipe.

Information sent between a module and the hub (and vice-versa) is always preceded by a standard sized
structure which contains, the command and four information fields. The necessary information, if any, is
then written back to the module, and the flow control takes the hub back up to the point where it can again

wait for a request.

One example of a request that a module might make is the allocation of memory which can eventually be
used by another module. It must first send a request to the hub to do this. The hub then allocates the
memory as a shared memory segment and retrieves the shared memory identifier associated with this
segment. This identifier is then stored by the hub in a data slructure possibly to be accessed by another
module at a later time. Finally this identifier is sent back to the module so that it may attach the shared
data to it's virtual memory address space.

At any time that a different module would like to access this data, a request is similarly sent to the hub to
retrieve the shared memory identifiers so that it too may attach to the data. Once the module has attached to
the data, UNIX semaphores are implemented to lock the shared data if it must be modified.

A consequence of using shared memory instead of standard dynamic memory is that dynamic data structures
such as linked list nodes no longer have a pointer to the next node but rather the shared memory id of the
next (and current) node. This shared memory id must be explicitly attached to and detached from whenever
the structure is traversed.

Using shared memory and sockets, FAST is able to quickly and easily share all the data used within the
environment. Even though shared memory can not yet be shared over different machines as it is on a single
host, FAST has been designed with this eventual capability in mind. When indeed we can accomplish this,
the ultimate power of FAST can be realized.

For an existing SGI visualization application to be converted into a FAST module:
• Command line arguments must be used to establish window location and Hub communication -

and nothing else.
• Periodically, each module must check for a command from the Hub. This is done once each time

through the main event loop.
• Standard input should not be used.
• Standard output should be used sparingly for status and error messages.
• The colormap must be used according to FAST conventions. FAST library functions must be

used to get color indices for drawing. A few indices are reserved for modules to create their own
colors, but most of the colormap is only modified via the FAST COLORMAP module.

• Grid, vector and scalar field data must be accessed via FAST shared memory.
• The panel library interface should he used for module interaction.
• The panel library's nap time or blocking should be turned on when waiting for user input to

avoid excessive context switching.
• The application's drawing code must he integrated into the viewing library so that its

visualizations can appear in FAST central.
• The data to be displayed must be placed in shared memory and made available to the viewing

mode

There are several advantages to integrating applications into FAST as modules. These advantages include:
• Shared memory speeds which allow users to interactively view their data from several modules

without long disk IO delays.
• Access to CFD Calculator to generate vector and scalar fields.
• Precalculated min and max for grids, vector and scalar fields. This reduces the time needed to

access data in many cases.
• Sophisticated colormap manipulation using the FAST colormap panel.
• Integration of visualizations created by several modules into a single scene.
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• Trivial integration of visualizations into animations.
• New applications can be built quickly since many functions have already been made available in

existing FAST modules and libraries.

There are also some disadvantages, of course. These include:
• Time to learn to use the FAST libraries and intermodule communications as well as to keep up

with future changes.
• Performance overhead due to multiple processes busy waiting.

Future plans for FAST include the capability for use across high speed LANs for 'smart' distribution of
processing. Compute intensive modules could be distributed or broken up into components that
communicate over these networks, or perhaps memory could be shared across systems.

As flow solvers become fully integrated and interactive 3-d grid generation becomes a reality, FAST will
continue to offer more effective visualizations of computational aerodynamics in all aspects of fluid flow
simulations.

At the time of this writing, the software is in Beta testing at NASA Ames Research Center and at over fifty
sites around the country. FAST 1.0 is tentatively scheduled for release in late 1990. Since this software
was developed for the government, it is in the public domain, and is available for no charge or a minimal
handling fee.
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